Saltar al contenido

De dos fracciones con el mismo denominador, la más grande es la que tiene el numerador más grande . Por ejemplo, de dos fraccionesDe dos fracciones con el mismo denominador, la más grande es la que tiene el numerador más grande . Por ejemplo, de dos fracciones

Sumar y restar fracciones

Al sumar (restar) fracciones con los mismos denominadores, se obtiene una fracción con el mismo denominador , y su numerador es igual a la suma (diferencia) de los numeradores de las fracciones consideradas.

Por ejemplo,

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos

Al sumar (restar) fracciones con diferentes denominadores, primero debes llevarlas a un denominador común . Para simplificar los cálculos, es conveniente reducir las fracciones al mínimo común denominador , aunque no es necesario.

Por ejemplo,

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos

(en las esquinas de arriba, aquí se indican factores adicionales ).

Multiplicación y división de fracciones.

Al multiplicar fracciones, se obtiene una fracción cuyo numerador es el producto del numerador y el denominador, el producto de los denominadores.

Por ejemplo,

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos

La división de fracciones se realiza de acuerdo con la siguiente regla:

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos

A veces, esta regla se formula de la siguiente manera: para dividir la primera fracción por la segunda, es necesario multiplicar la primera fracción por el segundo invertido.

En particular,

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos

Acciones de números mixtos

Para evitar errores al realizar operaciones aritméticas con números mixtos , se recomienda convertir primero los números mixtos en fracciones impropias , luego realizar las operaciones aritméticas necesarias y luego, si es necesario, convertir el resultado en un número mixto.

EJEMPLO . Hallar la suma, la diferencia, el producto y el cociente de números mixtos

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos   y   Libro de referencia electrónico sobre matemáticas para escolares operaciones aritméticas con fracciones y números mixtos

SOLUCION . Convirtamos estos números en fracciones impropias :

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos

Entonces obtenemos:

Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos
Guía electrónica de matemáticas para escolares aritmética suma resta multiplicación división fracciones acciones con números mixtos